

DE LA RECHERCHE A L'INDUSTRIE

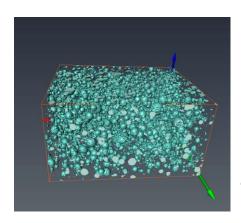


GÉNIE DES PROCÉDÉS CÉRAMIQUES, MATÉRIAUX RÉFRACTAIRES ET GÉOPOLYMÈRES

David LAMBERTIN – Expert sénior CEA Marcoule

27 juin 2019

- Présentation de la grappe de technologies :
 - Description technique
 - Propriété intellectuelle
 - Niveau de maturité
- Domaines d'applications
 - Nucléaire
 - Hors nucléaire
- Bénéfices et avantages concurrentiels apportés
- Offres de services et de partenariat CEA



Description des solutions

- Depuis une dizaine d'années, le CEA a développé des compétences spécifiques dans le domaine des céramiques hautes performances, des matériaux réfractaires et les géopolymères à des fins de de résistance en conditions extrême, de sécurisation des opérations, d'immobilisation des déchets/décontamination. Par ailleurs, le CEA a développé des compétences spécifiques dans la fabrication, caractérisation et modélisation de composites à matrice céramique à base de fibres de carbone ou SiC, capables de résister en environnement extrême tout en conservant une faible densité.
- En parallèle de ces sujets, le CEA s'implique activement dans le développement d'alliages dits à haute entropie aidé par des calculs thermodynamiques ainsi que le développement d'alliages plus performants pour l'industrie nucléaire ou aéronautique à l'aide de la métallurgie des poudres
- Enfin, une équipe de recherche spécialisée dans la simulation expérimentale de scénarios accidents graves de réacteurs nucléaires (atmosphère oxydante, vapeur d'eau ou réductrice jusqu'à 2800°C) a collaboré avec le CTTC Limoges pour développer, qualifier et mettre au point un procédé de fabrication de matériaux ultra-réfractaires à base de dioxyde d'hafnium.

Ce procédé utilise une première étape de mélange par voie sèche entre les deux types de poudre permettant le mélange intime de l'ajout stabilisant en faible quantité avec le dioxyde d'hafnium

Vue par tomographie X d'un composite géopolymère / organique pour la fabrication de matériaux à changement de phase

Domaine	Technologie	Brevets	TRL
Matériaux composites à matrice Céramique	Tube multicouche amélioré en matériau composite à matrice céramique, gaine de combustible nucléaire en résultant et procédés de fabrication associés	WO2013017621 A1	4-5
	Procédé pour améliorer la résistance mécanique d'un matériau composite à matrice céramique SiC/SiC	US2014346136	
Matériaux réfractaires à	Matériau céramique réfractaire à haute température de solidus, son procédé de fabrication et pièce de structure incorporant ledit matériau	06.11175	6
très haute température	Procédé de fabrication d'un matériau céramique réfractaire à haute température de solidus	06.11177	7
Géopolymères	Procédé pour préparer un matériau composite à partir d'un liquide organique et matériau ainsi obtenu	WO2014044776	7
	Procédé de préparation d'un géo polymère macroporeux et mésoporeux, à porosité contrôlée	FR3019176	4
	Géopolymère à matériau à changement de phase organique, procédés de préparation et utilisations	WO2018083411	4
	Procédé de fabrication d'une mousse de géopolymère fonctionnalisée	EP3288915	5
Métallurgie des poudres	Principalement du savoir-faire : définition de la composition pour atteindre les caractéristiques souhaitées et des conditions de mise en œuvre, consolidation à partir des poudres, mise en forme		
Alliage haute entropie	Principalement du savoir-faire : définition d'une nuance en fonction des caractéristiques visées à l'aide de calculs thermodynamiques, production et caractérisation des nuances jusqu'à 500 g		

Expertise	Applications Nucléaires	Applications Hors Nucléaire
Géopolymères	Immobilisation de déchets nucléaires et décontamination d'effluents radioactifs Expériences du CEA simulant les conditions accidents graves de réacteur nucléaire (y compris pour Fukushima) avec CORIUM : VERDON, PLINIUS	Génie civil: matériaux isolants, résistants au feu, matériau à changement de phase et recyclage de déchets industriels (cendres volantes et laitiers) Matériaux: précurseur de céramiques, mousse macro et méso poreuse Dépollution des eaux par filtration dans une mousse de géopolymère
Matériaux réfractaires hautes températures		Four solaire à très haute température (T= 2500°C) pour production d'hydrogène par craquage de l'eau, simulation de conditions extrêmes (qualification matériaux pour le domaine aérospatial par exemple)
Matériaux composites à matrice Céramique		Applications où une forte résistance aux hautes températures et/ou atmosphère corrosive est requise : aéronautique (aube de turbine), énergie (éléments pour des échangeurs thermiques à haute température par exemple)

Expertise	Bénéfices des technologies		
Géopolymères	Faible interaction entre certains déchets et le géopolymère (exemple du magnésium et de l'huile) permettant l'immobilisation de déchets radioactifs Diminution de l'impact carbone et valorisation de déchets industriels Préparation de céramiques ou de matériaux poreux avec une technologie type ciment		
Matériaux réfractaires hautes températures	Matériaux ultra-réfractaires pouvant être employés à très haute température (2500°C-2800°C) dans des conditions extrêmes (atmosphère oxydante : air, vapeur d'eau)		
Matériaux composites à matrice Céramique	Les géométries étudiées au CEA sont principalement axi-symétriques (structures tubulaires) et se distinguent des géométries étudiées dans le milieu industriel Obtention d'étanchéité à haute température et sous haute pression.		

- Concession de licences d'exploitation
- Accord de Collaboration pour les développements spécifiques à des domaines non nucléaires : expertise, co-développements, prestation d'ingénierie
- Etudes de faisabilité et expertises : analyse amont de la faisabilité de l'utilisation des géopolymères, matériaux composites à matrice céramiques ou matériaux réfractaires, dimensionnement, test et paramétrage, évaluation de l'efficacité du procédé, aide au choix des matériaux
- Réalisation de prototype
- Formation : ouverture de formations (initiations ou approfondissement) aux industriels (formations théoriques et travaux pratiques

DE LA RECHERCHE A L'INDUSTRIE

Contact:

David LAMBERTIN

Expert senior CEA

CEA Marcoule DEN

Tél.: 04 66 79 52 29

Email: david.lambertin@cea.fr

